Publications

You can also find my articles on my Google Scholar Profile

If one of my articles has been paywalled try the ACM Authorizer links on this page or feel free to shoot me an email!

Agree to Disagree: Robust Anomaly Detection with Noisy Labels

Published in Proceedings of the ACM on Management of Data (SIGMOD), 2025

Due to the scarcity of reliable anomaly labels, recent anomaly detection methods leveraging noisy auto-generated labels either select clean samples or refurbish noisy labels. However, both approaches struggle due to the unique properties of anomalies. Sample selection often fails to separate sufficiently many clean anomaly samples from noisy ones, while label refurbishment erroneously refurbish marginal clean samples. To overcome these limitations, we design Unity, the first learning-from-noisy-labels (LNL) approach for anomaly detection that elegantly leverages the merits of both sample selection and label refurbishment to iteratively prepare a diverse clean sample set for network training. Unity uses a pair of deep anomaly networks to collaboratively select samples with clean labels based on prediction agreement, followed by a disagreement resolution mechanism to capture marginal samples with clean labels. Thereafter, Unity utilizes unique properties of anomalies to design an anomaly-centric contrastive learning strategy that accurately refurbishes the remaining noisy labels. The resulting set composed of selected and refurbished clean samples is used to train the anomaly networks in the next training round. Our experimental study on 10 real-world benchmark datasets demonstrates that Unity consistently outperforms state-of-the-art LNL techniques by up to 0.31 in F-1 Score (0.52 to 0.83). Read more

Pluto: Sample Selection for Robust Anomaly Detection on Polluted Log Data

Published in Proceedings of the ACM on Management of Data (SIGMOD), 2025

Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, Pluto, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1 − 1/𝑒 ) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Read more

Counterfactual Explanation Analytics: Empowering Lay Users to Take Action Against Consequential Automated Decisions

Published in Proceedings of the VLDB Endowment (VLDB), 2024

Machine learning is routinely used to automate consequential decisions about users in domains such as finance and healthcare, raising concerns of transparency and recourse for negative outcomes. Existing Explainable AI techniques generate a static counterfactual point explanation which recommends changes to a user’s instance to obtain a positive outcome. Unfortunately, these recommendations are often difficult or impossible for users to realistically enact. To overcome this, we present FACET, the first interactive robust explanation system which generates personalized counterfactual region explanations. FACET’s expressive explanation analytics empower users to explore and compare multiple counterfactual options and develop a personalized actionable plan for obtaining their desired outcome. Visitors to the demonstration will interact with FACET via a new web dashboard for explanations of a loan approval scenario. In doing so, visitors will experience how lay users can easily leverage powerful explanation analytics through visual interactions and displays without the need for a strong technical background. Read more

Download Paper | Download Slides

Actionable Recourse for Automated Decisions: Examining the Effects of Counterfactual Explanation Type and Presentation on Lay User Understanding

Published in ACM Conference on Fairness, Accountability, and Transparency (FAccT), 2024

Automated decision-making systems are increasingly deployed in domains such as hiring and credit approval where negative outcomes can have substantial ramifications for decision subjects. Thus, recent research has focused on providing explanations that help decision subjects understand the decision system and enable them to take actionable recourse to change their outcome. Popular counterfactual explanation techniques aim to achieve this by describing alterations to an instance that would transform a negative outcome to a positive one. Unfortunately, little user evaluation has been performed to assess which of the many counterfactual approaches best achieve this goal. In this work, we conduct a crowd-sourced between-subjects user study (N = 252) to examine the effects of counterfactual explanation type and presentation on lay decision subjects’ understandings of automated decision systems. We find that the region-based counterfactual type significantly increases objective understanding, subjective understanding, and response confidence as compared to the point-based type. We also find that counterfactual presentation significantly effects response time and moderates the effect of counterfactual type for response confidence, but not understanding. A qualitative analysis reveals how decision subjects interact with different explanation configurations and highlights unmet needs for explanation justification. Our results provide valuable insights and recommendations for the development of counterfactual explanation techniques towards achieving practical actionable recourse and empowering lay users to seek justice and opportunity in automated decision workflows. Read more

Download Paper | Download Slides

FACET: Robust Counterfactual Explanation Analytics

Published in Proceedings of the ACM on Management of Data (SIGMOD), 2024

Machine learning systems are deployed in domains such as hiring and healthcare, where undesired classifications can have serious ramifications for the user. Thus, there is a rising demand for explainable AI systems which provide actionable steps for lay users to obtain their desired outcome. To meet this need, we propose FACET, the first explanation analytics system which supports a user in interactively refining counterfactual explanations for decisions made by tree ensembles. As FACET’s foundation, we design a novel type of counterfactual explanation called the counterfactual region. Unlike traditional counterfactuals, FACET’s regions concisely describe portions of the feature space where the desired outcome is guaranteed, regardless of variations in exact feature values. This property, which we coin explanation robustness, is critical for the practical application of counterfactuals. We develop a rich set of novel explanation analytics queries which empower users to identify personalized counterfactual regions that account for their real-world circumstances. To process these queries, we develop a compact high-dimensional counterfactual region index along with index-aware query processing strategies for near real-time explanation analytics. We evaluate FACET against state-of-the-art explanation techniques on eight public benchmark datasets and demonstrate that FACET generates actionable explanations of similar quality in an order of magnitude less time while providing critical robustness guarantees. Finally, we conduct a preliminary user study which suggests that FACET’s regions lead to higher user understanding than traditional counterfactuals. Read more

Download Paper | Download Slides

A Demonstration of AutoOD: A Self-Tuning Anomaly Detection System

Published in Proceedings of the VLDB Endowment (VLDB), 2022

Anomaly detection is a critical task in applications like preventing financial fraud, system malfunctions, and cybersecurity attacks. While previous research has offered a plethora of anomaly detection algorithms, effective anomaly detection remains challenging for users due to the tedious manual tuning process. Currently, model developers must determine which of these numerous algorithms is best suited for their particular domain and then must tune many parameters by hand to make the chosen algorithm perform well. This demonstration showcases AutoOD, the first unsupervised self-tuning anomaly detection system which frees users from this tedious manual tuning process. AutoOD outperforms the best un-supervised anomaly detection methods it deploys, with its performance similar to those of supervised anomaly classification models, yet without requiring ground truth labels. Our easy-to-use visual interface allows users to gain insights into AutoOD’s self-tuning process and explore the underlying patterns within their datasets. Read more

Download Paper | Download Slides

ELITE: Robust Deep Anomaly Detection with Meta Gradient

Published in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD), 2021

Deep Learning techniques have been widely used in detecting anomalies from complex data. Most of these techniques are either unsupervised or semi-supervised because of a lack of a large number of labeled anomalies. However, they typically rely on a clean training data not polluted by anomalies to learn the distribution of the normal data. Otherwise, the learned distribution tends to be distorted and hence ineffective in distinguishing between normal and abnormal data. To solve this problem, we propose a novel approach called ELITE that uses a small number of labeled examples to infer the anomalies hidden in the training samples. It then turns these anomalies into useful signals that help to better detect anomalies from user data. Unlike the classical semi-supervised classification strategy which uses labeled examples as training data, ELITE uses them as validation set. It leverages the gradient of the validation loss to predict if one training sample is abnormal. The intuition is that correctly identifying the hidden anomalies could produce a better deep anomaly model with reduced validation loss. Our experiments on public benchmark datasets show that ELITE achieves up to 30% improvement in ROC AUC comparing to the state-of-the-art, yet robust to polluted training data. Read more

Download Paper | Download Slides

Confidential Deep Learning: Executing Proprietary Models on Untrusted Devices

Published in ArXiv | Great Lakes Security Day, 2019

Deep Learning techniques have been widely used in detecting anomalies from complex data. Most of these techniques are either unsupervised or semi-supervised because of a lack of a large number of labeled anomalies. However, they typically rely on a clean training data not polluted by anomalies to learn the distribution of the normal data. Otherwise, the learned distribution tends to be distorted and hence ineffective in distinguishing between normal and abnormal data. To solve this problem, we propose a novel approach called ELITE that uses a small number of labeled examples to infer the anomalies hidden in the training samples. It then turns these anomalies into useful signals that help to better detect anomalies from user data. Unlike the classical semi-supervised classification strategy which uses labeled examples as training data, ELITE uses them as validation set. It leverages the gradient of the validation loss to predict if one training sample is abnormal. The intuition is that correctly identifying the hidden anomalies could produce a better deep anomaly model with reduced validation loss. Our experiments on public benchmark datasets show that ELITE achieves up to 30% improvement in ROC AUC comparing to the state-of-the-art, yet robust to polluted training data. Read more

Download Paper | Download Slides