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ABSTRACT
Deep Learning techniques have beenwidely used in detecting anom-

alies from complex data. Most of these techniques are either unsu-

pervised or semi-supervised because of a lack of a large number

of labeled anomalies. However, they typically rely on a clean train-

ing data not polluted by anomalies to learn the distribution of the

normal data. Otherwise, the learned distribution tends to be dis-

torted and hence ineffective in distinguishing between normal and

abnormal data. To solve this problem, we propose a novel approach

called ELITE that uses a small number of labeled examples to infer

the anomalies hidden in the training samples. It then turns these

anomalies into useful signals that help to better detect anomalies

from user data. Unlike the classical semi-supervised classification

strategy which uses labeled examples as training data, ELITE uses

them as validation set. It leverages the gradient of the validation

loss to predict if one training sample is abnormal. The intuition is

that correctly identifying the hidden anomalies could produce a

better deep anomaly model with reduced validation loss. Our exper-

iments on public benchmark datasets show that ELITE achieves up

to 30% improvement in ROC AUC comparing to the state-of-the-art,

yet robust to polluted training data.
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1 INTRODUCTION
Motivation. In recent years deep neural networks have beenwidely
used to detect anomalies from complex data sources, such as im-

agery and time series. Because real applications typically do not

have a large number of labeled anomalies available beforehand,

most deep anomaly detection techniques are either unsupervised [11,

14, 20] that do not use any labels, or semi-supervised [11, 20, 31]

that uses a small set of normal or abnormal examples to improve

the accuracy of unsupervised deep anomaly techniques.

The Limitations of State-of-the-art.However, these deep anom-

aly methods, either unsupervised or semi-supervised, require that

the unlabeled training data be clean – not contaminated by any

anomalies, so that they can learn a data representation that captures

the distribution of the normal data. Were the training data to be

contaminated by anomalies, the representation learned by these

deep models could encode information about anomalous samples as

part of the distribution of normal data. In this case, there is no guar-

antee that these models can properly distinguish between normal

and anomalous samples. However, in real applications such a clean

training data set rarely exists. Although the semi-supervised deep

anomaly methods improve the quality of unsupervised anomaly

detection by leveraging the classical semi-supervised classification

strategy, they still suffer from the polluted training data. As shown

in our experiments (Sec. 5.2), their performance degrades quickly

when the number of the anomalies in the training data increases.

ProposedApproach. In this work, we propose an approach, called
ELITE that leverages the labeled examples to solve the problem

caused by polluted training data.

Unlike the semi-supervised classification strategy that uses la-

beled examples as training data, ELITE uses them as validation
data. The core methodology of ELITE is to infer the labels of the

polluted training data samples as normal or anomalous according

to their potential influence on the model’s validation loss. ELITE

is based on a basic hypothesis: the correct labels of the unlabeled

training samples should reduce the validation loss on the labeled

examples. Thus ELITE uses a strategy that continuously discovers

the anomalies in the polluted training data and learns a better deep

anomaly model based on the corrected labels.

Moreover, using a tailored loss function that copes with normal

and anomalous samples differently, ELITE trains the model to max-
imize the anomalous score for unlabeled samples that are likely

anomalies while minimizing this score for unlabeled samples that

are likely normal. In this way, ELITE not only uses the information

from labeled examples, but also effectively turns the anomalies in
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Figure 1: ELITE: Robust to Polluted Training Data. Leverag-
ing the labeled examples, ELITE turns the hidden anomalies
into useful signals that help to learn a better classification
boundary.

the training data into useful signals that help to produce a data

representation inherently anomaly-aware.

Clearly, the key of ELITE is how to efficiently identify the op-

timal labels for the unlabeled samples that minimize the model’s

validation loss. Finding optimal labels by repeatedly flipping the

label of each sample and re-training the model to compute the val-

idation loss will be too expensive. To solve this problem, ELITE

proposes an efficient label inference method, called ALICE. ALICE

introduces the concept of meta-gradient to directly estimate the

potential change of the validation loss caused by altering the label

of any training sample, without having to indeed re-train the model.

ELITE then fuses ALICE into every iteration during the training

process to dynamically adjust the labels of the training samples in a

way that is guaranteed to monotonically reduce the validation loss.

ELITE is general in that different categories of unsupervised

deep anomaly techniques can seamlessly plug their objective func-

tions into ELITE and benefit from the labeled examples, such as

Auto-Encoder-based methods [3, 6, 13, 22, 30] and Deep One Class

Classification-based methods [19, 23], as discussed in Sec. 4.4 and

confirmed by our experiments (Sec. 5).

Contributions Our key technical contributions include:

• We propose ELITE, an approach that uses a small set of labeled

examples to solve the problem caused by polluted training data.

• Unlike existing semi-supervised classification techniques, ELITE

adopts a new optimization paradigm that uses the labeled examples

as validation set to infer the labels of the polluted training data.

• We propose ALICE that directly infers the labels of the training

data based on the gradient of the validation loss, without having to

re-training the deep learning model.

• Our experimental study on several benchmark datasets con-

firms that ELITE consistently outperforms the state-of-the-art semi-

supervised deep anomaly methods and the unsupervised robust

deep anomaly methods by 30% in ROC AUC score. Further, it is

robust to polluted training data: the more anomalies in the data,

the more it outperforms the alternatives.

2 RELATEDWORK
Unsupervised Deep Anomaly Detection. Unsupervised deep

anomaly techniques in general can be characterized into two

categories. The first category learns a representation that better

distinguishes anomalies from normal data. Some of these tech-

niques [3, 6, 13, 22, 30] use the reconstruction errors of Auto-

Encoder as the anomalous score to directly detect anomalies, as-

suming that Auto-Encoders incur larger reconstruction errors on

anomalies than normal objects. Some other techniques use the

same principle, but apply different deep learning techniques to

learn the data representation, such as Generative Adversarial Net-

works [2, 17, 29], self-learning models [10] and Auto-regressive

models [1]. One-class classification-based methods [8, 19–21, 23]

instead learn a feature embedding that maps normal objects into a

minimal volume hyper-sphere; then the objects out of the hyper-

sphere are considered as anomalies. The second category of deep

anomaly techniques [24, 25, 27, 33] use learned deep embedding to

enhance the classical shallow anomaly detection methods. To learn

a representation that is effective in separating anomalies, most of

these methods require a clean training data set – a data set not

containing any anomalies. However, such clean training data rarely

exist in real applications.

Robust Deep Anomaly Detection. Robust deep anomaly detec-

tion [4, 5, 28, 32] targets this problem. Based on the assumption that

anomalies in the training samples tend to incur large training loss in

the training process, these techniques iteratively remove anomalies

from the training set in each training epoch. However, they suffer

from the chicken-egg problem. That is, identifying anomalies based

on the training loss requires an accurate model, while training an

accurate model needs a clean training set. Another strategy is to use

the deep learning techniques that are robust to anomalies [8, 16]

to learn the representation. However, to overcome the influence

of anomalies these techniques often assume the distribution of the

normal examples is known beforehand. This assumption usually

does not hold in practice.

Semi-supervised Deep Anomaly Detection Semi-supervised

deep anomaly detection [11, 14, 20] uses a small number of anomaly

examples to improve the accuracy of unsupervised deep anomaly

techniques. Similar to classical semi-supervised classification, their

key idea is to use these anomaly examples as labeled training data
that are modeled as labeled loss to supplement the loss function of

the unsupervised deep learning method. However, these techniques

still assume that the unlabeled training data is clean and essentially

treat them as labeled normal examples. Therefore, they suffer from

the performance degradation caused by the hidden anomalies in the

unlabeled training data. Our ELITE approach instead uses a small

set of anomaly examples as validation set. It effectively discovers

the anomalies hidden in the polluted training data and turns these

anomalies into useful signals that help to learn a data representation

that better distinguishes between normal and abnormal samples.

3 PRELIMINARIES
3.1 Problem Definition
Given a set of unlabeled training samples X𝑈 : {𝑥𝑢

1
, · · · , 𝑥𝑢

𝑁
}

that contains anomalies, and a small set of labeled samples X𝐿 :

{(𝑥𝑙
1
, 𝑦𝑙

1
), · · · , (𝑥𝑙

𝑀
, 𝑦𝑙

𝑀
)} ∈ X × Y, where Y ∈ {−1, 1} with 𝑦𝑙 = 1

denoting normal sample and 𝑦𝑙 = −1 denoting anomalies, the goal

is to train a neural network 𝜙 (𝑥 ;\ ) that assigns small anomalous

scores to normal data and large anomalous scores to anomalies:



Ω(𝑥) |𝑦=−1 ≥ Ω(𝑥) |𝑦=1 +𝐶 (1)

In Eq. 1, Ω(𝑥) represents the anomalous score of 𝑥 , while 𝐶 is

a hyper-parameter that controls the margin of anomalous score

between normal data samples and anomalies.

3.2 Unsupervised and Semi-supervised Deep
Anomaly Detection

To better present our proposed approach in Sec. 4, in this section

we briefly introduce the key concepts of unsupervised and semi-

supervised deep anomaly detection, using one-class classification-

based methods [19, 23], deep Auto-Encoder-based methods [3, 6,

13, 22, 30], and semi-supervised DeepSAD [20] as examples.

3.2.1 Unsupervised Deep Anomaly Detection. Let 𝜙 (𝑥 ;\ ) be a neu-
ral network parameterized by \ , and Ω(𝑥) be the anomalous score

function for a data sample 𝑥 . The goal of deep one-class classifica-

tion [19, 23] is to map the training samples into a compact hyper-

sphere in the learned latent space, where Ω(𝑥) = ∥𝜙 (𝑥, \ ) − 𝑜 ∥2
with 𝑜 denoting the center of the learned hypersphere.

The Auto-Encoder-based methods train a dimension reduction

model that reconstructs all training samples with small error. Natu-

rally, it uses the reconstruction error as the anomalous score func-

tion, i.e. Ω(𝑥) = ∥𝜙 (𝑥 ;\ ) −𝑥 ∥. The training objective is to minimize

the average anomalous score of the training samples as shown in

Eq. 2.

argmin

\

1

𝑁

𝑁∑
𝑖=1

Ω(𝑥) (2)

These unsupervised deep anomaly methods work well when the

training dataset contains no or only very few anomalies. However,

this assumption does not hold in many real applications. Mini-

mizing the anomalous score of all training samples thus causes

performance degradation as discussed in Sec. 1.

3.2.2 Semi-Supervised Deep Anomaly Detection. As a semi-

supervised deep anomaly method, DeepSAD [20] uses the training

loss incurred on the labeled anomaly samples to compensate the

loss function of the unsupervised Deep SVDD [19].

argmin

\

1

𝑁 +𝑀

𝑁∑
𝑖=1

∥𝜙 (𝑥𝑖 , \ ) −𝑜 ∥2 +
1

𝑁 +𝑀

𝑀∑
𝑗=1

(∥𝜙 (𝑥 𝑗 , \ ) −𝑜 ∥2)𝑦 𝑗

(3)

In Eq. 3, 𝑜 represents a vector in the deep feature embedding. 𝑁

and𝑀 are the size of the unlabeled and labeled set respectively. The

first part of Eq. 3 is identical to the loss function of the unsupervised

Deep SVDD [19]. We call it unsupervised loss. The second part

corresponds to the supervised loss. As a penalization function, it

pushes the labeled anomalies further away from the center.

4 PROPOSED METHOD: ELITE
4.1 Overview of ELITE
Next, we introduce ELITE, a novel approach that effectively lever-

ages a small number of labeled examples to solve the pollution

problem of training samples. ELITE uses the labeled examples as

validation set to evaluate the model trained on the unlabeled train-

ing samples. The key idea of ELITE is to infer the labels of the
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Figure 2: Overview of ELITE

unlabeled training samples as normal or anomalous according to

the potential influence on model’s validation loss. It then learns

from the corrected labels a better deep anomaly model. In this way,

ELITE no longer relies on the availability of a clean training dataset.

Fig. 2 depicts the overall process of ELITE. Given a polluted

training setX𝑈 : {𝑥𝑢
1
, · · · , 𝑥𝑢𝑛 }, ELITE starts with assigning a pseudo

label to each sample in X𝑈 and trains a deep learning model on

these pseudo labels. Initially, we assume all samples are normal.

It then uses the labeled examples to validate the effectiveness of

the model. Next, ELITE uses a pseudo label inference method that

leverages the gradient of the validation loss to correct the pseudo

labels of the training samples in a way guaranteed to reduce the

validation loss. ELITE then updates the deep anomaly model based

on the corrected labels. It iterates the pseudo label inference and

model update steps until updating the labels of the training samples

no longer decreases the validation loss. ELITE deploys the final

deep anomaly model to detect anomalies from user data.

In the rest of this section, we first introduce ELITE’s objective

functions including the training loss and validation loss in Sec. 4.2.

Then in Sec. 4.3 we propose an effective strategy to update the

pseudo labels and analyze its time complexity and convergence.

Finally, we show how ELITE works seamlessly with the existing

unsupervised anomaly methods using Deep SVDD [19] as example.

4.2 Objective Functions
4.2.1 Training loss. The objective of ELITE is to train a deep learn-

ing model 𝜙 (𝑥 ;\ ) that assigns large anomalous score to anom-

alies and small anomalous score to normal data, e.g., Ω(𝑥) |𝑦=−1
≥ Ω(𝑥) |𝑦=1+𝐶 . To achieve this goal, we design a tailored hinge loss
function that copes with anomalous and normal samples differently.

More specifically, given the pseudo label 𝑦 of the training sample 𝑥 ,

we define the loss function as:

𝑙 (𝑥,𝑦) =
{
Ω(𝑥), 𝑦 = 1

max{𝐶 − Ω(𝑥), 0}, 𝑦 = −1
(4)

In Eq. 4, Ω(𝑥) can be any anomalous score function used by ex-

isting unsupervised deep anomaly methods as discussed in Sec. 3.2.

Given the pseudo labels 𝑦 and the loss function defined in Eq. 4,

ELITE learns the optimal parameters \∗ (𝑦) to minimize the average



loss incurred by these pseudo labels. The objective function is

defined as follows.

\∗ (𝑦) = argmin

\

1

𝑁𝑢

𝑁𝑢∑
𝑖=1

𝑙 (𝑥𝑖 , 𝑦𝑖 ) (5)

Given the pseudo labels 𝑦, it is straightforward to learn \∗ (𝑦),
using the existing training methods.

Note in Eq. 4 𝐶 is a hyper-parameters that controls the margin

of anomalous score between normal samples and anomalies. The

optimal parameters \∗ (𝑦) will concurrently minimize the anoma-

lous score of normal samples and grow the anomalous score of

anomalies to a value no smaller than 𝐶 .

An appropriate hyper-parameter𝐶 is critical to the performance

of ELITE. A too large𝐶 tends to make the training process unstable,

while a small𝐶 fails to separate anomalies from normal samples. We

design an intuitive method to automatically determine 𝐶 . Given an

unsupervised counterpart of ELITE denoted as 𝜙 (𝑥 ;\0) where \0
represents its initial parameters, we simply set the hyper-parameter

𝐶 as its training loss averaged on all samples. The intuition is that

because the training process targets minimizing the training loss on

the normal examples, the final model will produce a training loss

on each normal example that in average is guaranteed to be much

smaller than the initial average loss. Therefore, a hyper-parameter

𝐶 set in this way tends to be effective in separating anomalies from

normal samples.

4.2.2 Validation Loss. Given a set of labeled examples as validation

set, ELITE defines the validation loss L𝑣
as follows.

L𝑣 (\ ) = 1

𝑁 𝑙

𝑁 𝑙∑
𝑗=1

𝑙 (𝑥𝑙𝑗 , 𝑦
𝑙
𝑗 ;\ ) (6)

In Eq. 6, 𝑁 𝑙
represents the number of labeled examples and

𝑙 (𝑥𝑙
𝑗
, 𝑦𝑙

𝑗
;\ ) corresponds to the training loss function (Eq. 4).

ELITE aims to assign a pseudo label 𝑦 to each unlabeled training

sample so that the validation loss of the trained model is minimized.

𝑦∗ = argmin

𝑦
L𝑣 (\∗ (𝑦)) (7)

Here \∗ (𝑦) corresponds to the optimal parameters learned from

the current pseudo labels as discussed in Sec. 4.2.1.

4.3 Pseudo Label Inference
The key of ELITE is to effectively identify the optimal pseudo labels

that minimize the model’s validation loss. Obviously, inferring

such optimal pseudo labels by recursively flipping the label of each

sample, re-training the deep anomaly model, and calculating the

validation loss will be too expensive.

To solve this problem, ELITE proposes an efficient pseudo label

inference method, called ALICE. The key idea is to use the gradient

of the current model’s validation loss to predict how altering the

label of one training sample will change the validation loss.

4.3.1 Meta-gradient-based Pseudo Label Inference

Assume we have already trained a model using all training sam-

ples X𝑈 and denote its learned parameters as \∗. Given a training

sample 𝑥𝑡 in X
𝑈
, if we flip its label, we could learn a new model

parameterized by \∗−.

Let 𝐿𝑣 (\ ) denote the validation loss of a model parameterized by

\ , that is, the model’s loss on the validation set. If we are aware of

the difference between the validation loss of the original model \∗

and that of the new model \∗−, namely, 𝐿𝑣 (\∗) − 𝐿𝑣 (\∗−), it will be
straightforward to decide if we should flip the label of 𝑥𝑡 . That is,

assume 𝑥𝑡 was normal. If 𝐿𝑣 (\∗) − 𝐿𝑣 (\∗−) > 0, ELITE should flip

𝑥𝑡 to be abnormal, and change its pseudo label as 𝑦 = −1, because
this will reduce the validation loss. Otherwise, 𝑥𝑡 remains normal.

Because we already have \∗ of the original model, comput-

ing its validation loss 𝐿𝑣 (\∗) is straightforward, that is, 𝐿𝑣 (\∗) =
1

𝑀

∑𝑀
𝑖 𝑙 (𝑥𝑙

𝑖
, 𝑦𝑙

𝑖
;\∗). The goal of ALICE is to estimate𝐿𝑣 (\∗)−𝐿𝑣 (\∗−)

without learning the new model \∗−.
By the objective function (Eq. 5), \∗ is learned as: argmin\ 𝐿(\ )

where 𝐿(\ ) = 1

𝑁
[∑𝑁

𝑖≠𝑡 𝑙 (𝑥𝑢𝑖 , 𝑦
𝑢
𝑖
;\ ) + Ω(𝑥𝑡 ;\ )]. Here by the loss

function (Eq. 4), Ω(𝑥𝑡 ;\ ) represents the loss on 𝑥𝑡 if considering

𝑥𝑡 as normal.

Without loss of generality, we assume 𝐶 in the loss function

(Eq. 4) is large enough and therefore max{𝐶 − Ω(𝑥 ;\ ), 0} = 𝐶 −
Ω(𝑥 ;\ ) that corresponds to the loss of an anomaly 𝑥 . Now if we

change 𝑥𝑡 to anomaly, the new model \∗− can be learned as follows:

\∗− = argmin

\

{𝐿(\ ) − 2

𝑁
Ω(𝑥𝑡 ;\ )} (8)

This is because altering the label of 𝑥𝑡 from normal to abnormal

is equivalent to first removing Ω(𝑥𝑡 ;\ ) from 𝐿(\ ), and then adding

𝐶 − Ω(𝑥 ;\∗) back.
Next, we use 𝜖 to represent -

2

𝑁
that weights the training loss of

𝑥𝑡 . Now Eq. 8 changes to: \∗− = argmin\ {𝐿(\ ) +𝜖 Ω(𝑥𝑡 ;\ )}. Similar

to [7, 15, 18], we consider 𝜖 as a variable [7]. Now \∗− is a function
of 𝜖 , denoted as \ (𝜖). When 𝑁 is sufficiently large, 𝜖 approaches 0.

ALICE then uses the gradient of \ (𝜖) at 𝜖 = 0 to approximate

the change from 𝐿𝑣 (\∗) to 𝐿𝑣 (\∗−).

𝐿𝑣 (\∗) − 𝐿𝑣 (\∗−) =
𝑑𝐿𝑣 (\∗ (𝜖))

𝑑𝜖

��
𝜖=0

(9)

We call the gradientM =
𝑑𝐿𝑣 (\ ∗ (𝜖))

𝑑𝜖

��
𝜖=0

asmeta-gradient.
Once getting the meta-gradient, applying the update rule defined

below is guaranteed to reduce the validation loss.

Definition 1. Update Rule.

𝑦 = − sign(𝐿𝑣 (\∗) − 𝐿𝑣 (\∗−)) = − sign(
𝑑𝐿𝑣 (\∗ (𝜖))

𝑑𝜖

��
𝜖=0
) (10)

The reason is that a positive value of 𝐿𝑣 (\∗+) − 𝐿𝑣 (\∗−) means

treating the new training sample as an anomalywill lead to a smaller

validation loss than treating it as normal, and vice versa.

Note above we assume the training sample 𝑥𝑡 was originally

normal. However, the update rule equally works if 𝑥𝑡 was abnormal.

4.3.2 Meta-gradient Estimation
To compute meta-gradient, the only thing missing here is \∗ (𝜖).
Similar to [18] ALICE approximates \∗ (𝜖) by taking one step of

gradient descent on the original model \∗.

ˆ\ (𝜖) = \∗ − [\𝜖∇\ ∗Ω(𝑥𝑡 , \∗) (11)

[\ represents leaning rate, a hyper-parameter of deep learning.

Given
ˆ\ (𝜖), ALICE now is ready to apply the update rule to

approximate 𝑦𝑖 . More specifically,



𝑦𝑖 = − sign (
𝑑𝐿𝑣 ( ˆ\ (𝜖))

𝑑𝜖

��
𝜖=0
)

= − sign ( 𝑑
𝑑𝜖

1

𝑀

𝑀∑
𝑖=1

𝑙 (𝑥𝑙𝑖 , 𝑦
𝑙
𝑖 ;
ˆ\ (𝜖)) |𝜖=0)

(12)

Intuitive Interpretation of ALICE. First, we unroll Equation 12

with the chain rule. Given a training sample 𝑥𝑖 , we have ˆ\ (𝜖) = \∗

when 𝜖 = 0. Then we have:

𝑦𝑖 = − sign (
𝑑𝐿𝑣 ( ˆ\ (𝜖))

𝑑𝜖
)

= sign ( 𝐿
𝑣 ( ˆ\ (𝜖))
𝑑\

���
ˆ\ (𝜖)

𝑑 (\∗ − 1

𝑁
[\𝜖∇\Ω(𝑥𝑖 ;\∗))
𝑑𝜖

���
𝜖
)

= sign ([\
𝑁

𝑑𝐿𝑣 (\∗)
𝑑\

���
\ ∗

𝑑Ω(𝑥𝑖 ;\∗))
𝑑\

���
\ ∗
)

(13)

Eq. 13 shows that 𝑦𝑖 corresponds to an inner product between

the gradient of the training loss of the given training sample and the

gradient of the validation loss. Given a training sample 𝑥𝑖 initialized

as normal, if its gradient is in the same direction to the gradient

of the validation loss, then 𝑥𝑖 will indeed be a normal object. This

is because in this case minimizing its training loss by gradient

descent – the typical practice of deep learning optimization, will also

minimize the validation loss. Otherwise, 𝑥𝑖 should be an anomaly.

4.3.3 Learning at Scale

The Learning process. Next, we introduce how ELITE infers the

optimal pseudo labels for the entire unlabeled dataset. ELITE fuses

ALICE into every iteration during the training process of the deep

anomaly model and dynamically adjusts the labels of the training

samples. ELITE starts with assuming that all unlabeled training

samples are normal. Once one training iteration is done, ELITE

estimates the meta-gradient for each sample 𝑥𝑖 and applies the

update rule to update its pseudo label. Thereafter, ELITE updates

the parameters of the deep anomaly model using Eq. 14.

\𝑡+1 = \𝑡 − [\ [
1

𝑁

𝑁∑
𝑖=1

𝛼𝑖∇\ 𝑙 (𝑥𝑖 , 𝑦𝑖 ;\ )] (14)

In Eq. 14, \𝑡+1 represents the new parameters, while \𝑡 represents

the parameters produced in last iteration. [\ is the learning rate.

Same to the traditional gradient descent optimization, Eq. 14 uses

the gradient of the loss function ∇\ 𝑙 (𝑥𝑖 , 𝑦𝑖 ;\ ) to update \𝑡 . But

ELITE weights the meta-gradient at each training sample 𝑥𝑖 with

𝛼𝑖 = [𝑀 · ∥M𝑖 ∥, where ∥,M𝑖 ∥ represents the absolute value of the
meta-gradient, and [𝑀 is a hyper-parameter. The intuition is that,

if the meta-gradient of a training sample 𝑥𝑖 has a larger absolute

value, 𝑥𝑖 is more important. This is because by our ALICE method,

potentially 𝑥𝑖 will contribute more in reducing the validation loss.

Batch Optimization. Although ELITE effectively avoids recur-

sively re-training the deep learning model, it still tends to be expen-

sive when the unlabeled training dataset is large. Similar to [12, 18],

ELITE employs a mini-batch based optimization strategy to ad-

dress the efficiency concern. During each training iteration, ELITE

randomly divides the unlabeled training samples into many mini-

batches and then concurrently updates the labels with respect to

each mini-batch. Each mini-batch contains only 𝑛 ≪ 𝑁 unlabeled

objects. Therefore, it significantly speeds up the training process.

As a standard deep learning training process, ELITE can run on

any deep learning platform such as TensorFlow and Pytorch.

Time Complexity Analysis. Compared to unsupervised deep

anomaly methods, ELITE requires an extra forward and backward

pass to obtain the gradient of each training sample and an addi-

tional forward and backward pass to calculate 𝑦𝑖 . Thus, ELITE

is approximately 3× slower than the unsupervised deep anomaly

methods. We argue that the additional computing cost is worth-

while in practice because ELITE is robust to polluted training data

and significantly improves the accuracy of anomaly detection.

Convergence Analysis.

Theorem 2. Suppose the validation loss 𝐿𝑣 (𝑥 ;\ ) is Lipschitz
smooth with constant 𝐿, and the gradient of training data is bounded
by 𝜎 . Then as long as the learning rate [𝑦[\ ≤ 2𝑛

𝐿𝜎2
, the validation

loss decreases monotonically,
𝐿𝑣 (\𝑡+1) ≤ 𝐿𝑣 (\𝑡 ) (15)

Proof. Without loss of generality, we assume𝐶 in the loss func-

tion (Eq. 4) is large enough and therefore max{𝐶 − Ω(𝑥 ;\ ), 0} =
𝐶 − Ω(𝑥 ;\ ) which corresponds to the loss of an anomaly 𝑥 . Com-

bining Equation 14 and Equation 13, we have,

\𝑡+1 = \𝑡 − [𝑦[\ {
1

𝑛

𝑛∑
𝑖=𝑖

[∇\𝐿𝑣 (\𝑡 )∇\𝐿𝑖 (\𝑡 )]∇\𝐿𝑖 (\𝑡 )} (16)

where ∇\𝐿𝑣 (\𝑡 ) =
𝜕𝐿𝑣 (\𝑡 )

𝜕\

���
\𝑡

and ∇\𝐿𝑖 (\𝑡 ) =
𝜕Ω (𝑥𝑖 ;\𝑡 ))

𝜕\

���
\𝑡
. For

simplicity of expression, we denote ∇\𝐿𝑣 (\𝑡 ) as ∇𝐿𝑣 and ∇\𝐿𝑖 (\𝑡 )
as ∇𝐿𝑖 .

Since the validation loss 𝐿𝑣 (\ ) is Lipschitz smooth with constant

𝐿, from [9],

𝐿𝑣 (\𝑡+1) ≤ 𝐿𝑣 (\𝑡 ) + (∇𝐿𝑣)𝑇 △\ +
𝐿

2

∥△\ ∥2 (17)

Plugging in Equation 16,

𝐿𝑣 (\𝑡+1) ≤ 𝐿𝑣 (\𝑡 ) − 𝐼1 + 𝐼2, (18)

where,

𝐼1 = [𝑦[\

𝑚∑
𝑖=1

(∇𝐿𝑣∇𝐿𝑖 )2 (19)

and,

𝐼2 =
𝐿

2

∥
[𝑦[\

𝑛

𝑚∑
𝑖=1

(∇𝐿𝑣∇𝐿𝑖 )∇𝐿𝑖 ∥2

≤ 𝐿

2

[2𝑦[
2

\

𝑛2

𝑚∑
𝑖=1

∥(∇𝐿𝑣∇𝐿𝑖 )∇𝐿𝑖 ∥2

=
𝐿

2

[2𝑦[
2

\

𝑛2

𝑚∑
𝑖=1

(∇𝐿𝑣∇𝐿𝑖 )2∥∇𝐿𝑖 ∥2

≤ 𝐿

2

[2𝑦[
2

\

𝑛2

𝑚∑
𝑖=1

(∇𝐿𝑣∇𝐿𝑖 )2𝜎2

(20)

The first inequality comes from the triangle inequality, and the sec-

ond inequality holds since the gradient of training data is bounded



by 𝜎 . If we denote a value 𝜏 at iteration 𝑡 , 𝜏𝑡 =
∑𝑚
𝑖=1 (∇𝐿𝑣∇𝐿𝑖 )2,

then we have,

𝐿𝑣 (\𝑡+1) ≤ 𝐿𝑣 (\𝑡 ) −
[𝑦[\

𝑛
𝜏𝑡 (1 −

𝐿[𝑦[\𝜎
2

2𝑛
) (21)

Note by definition 𝜏𝑡 is non-negative and [𝑦[\ ≤ 2𝑛
𝐿𝜎2

, we have,

𝐿𝑣 (\𝑡+1) ≤ 𝐿𝑣 (\𝑡 ) (22)

Theorem 2 is proven. □

4.4 Example: Applying ELITE to Deep SVDD
In this section, we show that ELITE is able to easily adapt existing

unsupervised deep anomaly methods to benefit from the anomaly

examples at hand. More specially, to support one unsupervised

deep anomaly method, the only change we need to make is to plug

its anomalous score function 𝜔 (𝑥) into the loss function of ELITE

(Eq. 4 in Sec. 4.2). Next, we use Deep SVDD [19] as an example to

showcase this. Deep SVDD is briefly reviewed in Sec. 3.2.

Algorithm 1 ELITE on Deep SVDD

Input:
Unlabeled data: 𝑋𝑈 : {𝑥1, . . . , 𝑥𝑁 }
Validation examples: 𝑋𝑉 : ({(𝑥1, 𝑦1), . . . , (𝑥𝑀 , 𝑦𝑀 )}
Hyperparameters: [𝑀 , [\ , Hypersphere center, 𝑜 , Margin, 𝐶

Loss Function: Ω(𝑥, 𝑜) =∥𝑥 − 𝑜 ∥
1: Initialize:

Neural network weights: \

2: for each epoch do
3: for each mini-batch do
4: Draw mini-batch 𝐵𝑈 :{𝑥1, . . . , 𝑥𝑛} from 𝑋𝑈
5: Draw mini-batch 𝐵𝑉 :{(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)} from 𝑋𝑉
6: Initialize:
7: 𝑦𝑖 ← 0 ∀𝑥𝑖 ∈ 𝐵𝑈
8:

ˆ\ (𝑦) ← \ − [\ [ 1𝑛
∑𝑛
𝑖=0 𝑦𝑖∇\Ω(𝑥, \ )]

9: Update:
10: M𝑖 ← [𝑦

𝜕
𝜕𝑦𝑖

1

𝑚

∑𝑚
𝑖=1 𝐿

𝑣 (𝑥𝑖 , ˆ\ (𝑦)) |�̃�)
11: 𝑦𝑖 = − sign (M𝑖 )
12: 𝛼𝑖 = [𝑀 · ∥M𝑖 ∥
13: \ ← \ − [\ [ 1𝑛

∑𝑛
𝑖=0 𝛼𝑖∇\ ł(𝑥𝑖 , 𝑦𝑖 ;\ )]

Output: Trained Model: 𝜙★(𝑥, \★)

As shown in Algorithm 1, ELITE starts with initializing the

neural network‘s parameters \ and the hypersphere center 𝑜 exactly

as what Deep SVDD does. Then, in each epoch ELITE samples a

mini-batch of unlabeled samples 𝐵𝑈 and uses the labeled samples as

validation set. Next, ELITE assigns an initial pseudo label 𝑦𝑖 to each

unlabeled sample in 𝐵𝑈 . ELITE uses these pseudo labels to learn the

parameters \ of the network. It then computes the validation loss

using the loss function in Eq. 4, alters the pseudo labels according

to the update rule in Def. 1, and updates the parameters by Eq. 14.

These steps iterate until the validation loss is minimized or reaching

the epoch limit.

5 EXPERIMENTS
We conduct an experimental study to evaluate the effectiveness of

ELITE. Specifically, we focus on the following four questions:

1. Robustness to Polluted Training Data: How does ELITE

compare with existing deep anomaly techniques in term of the

robustness to the polluted training data?

2. Performance with different number of labels: How does

ELITE perform in contrast to the existing deep anomaly methods

when using different number of labels?

3. Sensitivity Analysis: Is ELITE sensitive to the selection of

its hyper-parameters?

4. Training Mechanism: How is our training mechanism dif-

ferent from the standard semi-supervised learning?

5.1 Experiment Setup and Methodology
Experimental Setup. All experiments are conducted on Google

Cloud with a virtual machine with 12 CPU cores and 4 P-100 GPUs.

All code is developed with Python 3 on Pytorch 1.5.0.

Datasets. We evaluate ELITE using three benchmark datasets

which are also frequently used in the experiments of the state-

of-the-art deep anomaly works we compare against [19, 20].

• MNIST: The MNIST dataset consists of 28 × 28 pixel grayscale

images of the handwritten digits 0-9. Each image contains only one

digit centered in the frame and is given a class label corresponding

to the digit it contains. Given the relatively simple and clear shape

of the digits and the consistent black background, we consider it as

the least complex dataset among the three datasets we use.

• FMNIST: The FMNIST or Fashion-MNIST dataset was created

to be a more complex replacement for MNIST. FMNIST consists of

28x28 pixel grayscale images for ten types of clothing articles such

as T-shirts, coats, and sneakers with corresponding labels.

• CIFAR-10: The CIFAR-10 dataset consists of 32x32 color im-

ages of ten distinct object classes. Four of the classes are types of

vehicles – airplane, automobile, ship, truck – with the remaining

six being varying types of animals. Images in this dataset were

originally drawn from internet search engines and converted to the

32x32 resolution.

Alternative Methods. We compare ELITE against the state-of-

the-art unsupervised (DeepSVDD [19]), semi-supervised (Deep-

SAD [20], SSAD [11], and robust (RSRAE [16]) deep anomaly meth-

ods. Moreover, to show ELITE is model agnostic, we implement

ELITE on top of two types of unsupervised deep anomaly mod-

els, namely the one-class classification-based DeepSVDD [19] and

Auto-Encoder.

• DeepSVDD [19] is the state-of-the-art unsupervised anomaly

method, which detects anomalies by mapping the training data into

a compact hyper-sphere, assuming the training data is clean.

• DeepSAD [20] extends Deep SVDD method to the semi-

supervised setting and uses the labeled examples as training data to

improve the accuracy of anomaly detection. We consider DeepSAD

as the most related work to ELITE.

• SSAD [11] is a popular shallow semi-supervised anomaly

method built on vanilla SVDD [26]. Similar to DeepSAD, it directly

uses the labeled examples as training data and encourages themodel

to generate large anomalous score on the labeled anomalies.

• RSRAE is the state-of-the-art robust deep anomaly method,

which combines a simple Auto-Encoder with robust deep learning

techniques, more specifically Robust Subspace Recovery (RSR) layer.



(a) CIFAR-10 (b) FMNIST (c) MNIST

Figure 3: ROCAUC: Varying the Ratio of Anomalies in Training data

(a) CIFAR-10 (𝑟𝑝 = 0.1) (b) FMNIST (𝑟𝑝 = 0.1) (c) MNIST (𝑟𝑝 = 0.1)

Figure 4: ROCAUC: Varying the Number of Labeled Examples (Lightly Polluted)

(a) CIFAR-10(𝑟𝑝 = 0.5) (b) FMNIST (𝑟𝑝 = 0.5) (c) MNIST (𝑟𝑝 = 0.5)

Figure 5: ROCAUC: Varying the Number of Labeled Examples (Heavily Polluted)

The RSR layer is used to learn a subspace within the latent space

where normal and anomalous samples are well separated.

Methodology. Following the state-of-the-art [20], for each dataset

we select one class as normal and consider other classes as abnormal.

To ensure that results are not class dependent, we repeat each set of

experiments with a different class selected as the normal class until

all classes are exhausted.We then report the average of these results.

For each experiment, we randomly select 5,000 objects to create

a training dataset. This set contains samples from both normal

and anomalous classes, with the ratio of anomalies controlled by

the value 𝑟𝑝 . In general 𝑟𝑝 is selected to be small such that the

majority of the training samples are drawn from the normal class,

while the few anomalies are drawn from the remaining classes.

From each dataset, we randomly sample an equal number of normal

samples and anomalies to be used as the labeled training dataset and

consider the remaining samples to be unlabeled. We vary the ratio

of training points allocated to the labeled training set 𝑟𝑙 and the ratio

of pollution in the training dataset 𝑟𝑝 to analyze the performance

of ELITE in a wide variety of scenarios. Again, following [20], we

use the Area Under Curve (AUC) score of the Receiver Operating

Characteristic (ROC) curve as the metric to evaluate the accuracy

of each method.

5.2 Varying the Ratio of Anomalies
In this experiment, we investigate the robustness of different deep

anomaly detection methods to the increasing ratio of anomalies



in the training set. To do this, we vary the ratio of anomalies in

training set from 0.1 to 0.5. We fix the ratio of labeled examples

𝑟𝑙 , and repeat the experiments on all ten classes and report the

average results over all experiments on each dataset. For MNIST

and FMNIST we use 20 labeled examples, while for CIFAR-10 we

use 100 to account for its much higher complexity.

Figure 3 indicates that both of our ELITE-based methods, ELITE

_AE and ELITE _SVDD, outperform all other methods by up to 30%,

especially on the complex datasets such as CIFAR-10. Also, we find

that the performance of ELITE never degrades with the increasing

ratio of anomalies in training data. However, the performance of

the state-of-the-art methods, including the robust deep anomaly

method RSRAE, significantly decrease as the ratio of anomalies

in the training data increases. Furthermore, on the CIFAR-10 and
FMNIST dataset, ELITE achieves even higher performance when

the anomaly ratio is highest, i.e. 𝑟𝑝 = 0.5. This is because ELITE

not only identifies the anomalies in the training dataset, but also

effectively uses them to learn an anomaly-aware data representation

that improves the accuracy of anomaly detection. This confirms that

ELITE not only outperforms the other methods but also is much

more robust to anomalies in the training dataset. Furthermore,

we find that the shallow SSAD method even outperforms its deep

competitor, DeepSAD. We argue that this shows it is easier for deep

anomaly detection models to overfit the anomalies in the training

data due to their complex network structure using a large number

of parameters.

5.3 Varying the Ratio of Labeled Examples
In this scenario, we compare the performance of different semi-

supervised deep anomaly methods given a different number of

labeled examples. For this experiment, we evaluate our method

on both lightly polluted training data where 𝑟𝑝 = 0.1, and heavily

polluted training data where 𝑟𝑝 = 0.5. For FMNIST and MNIST we

vary the number of labeled samples from 20 to 100 in steps of 10

(𝑟𝑙 = 0.004 − 0.02), while for CIFAR-10 we test 100 to 500 labeled

samples with intervals of 50 (𝑟𝑙 = 0.02−0.1). Again, we exhaustively
use every class in each dataset as normal samples and report each

dataset’s average result.

Figure 4 and Figure 5 show the result on lightly polluted (𝑟𝑝 =

0.1) and heavily polluted datasets (𝑟𝑝 = 0.5) respectively. Both of

our methods significantly outperform the other methods on all

heavily polluted datasets by up to 25%. This again shows ELITE is

significantly more robust to anomalies in the training data, because

ELITE effectively leverages the labeled examples. Moreover, ELITE

reaches very high accuracy with very few labeled examples. This is

because ELITE uses the labeled examples as validation data, and it

requires much fewer labels to evaluate the model performance than

training the model. Therefore, although increasing the number of

labels improves the performance of DeepSAD, it is consistently less

accurate than our ELITE-based methods. Note that even when the

dataset is lightly polluted, DeepSAD still requires 2 - 3 times more

labeled examples to achieve comparable performance to ELITE on

complex datasets like CIFAR-10 and Fashion-MNIST.

Figure 6: Sensitivity Analysis of [𝑀 of ELITE

5.4 Sensitivity Analysis
Here we investigate how sensitive ELITE is to the value of hyper-

parameter [𝑀 which controls the factor that the validation loss

plays in the learning process. We report the results on our ELITE

_SVDD method, although ELITE _AE shows the similar trend. We

set 𝑟𝑝 to 0.1 and we use 20 labeled examples for both MNIST and

FMNIST and 100 labeled examples for CIFAR-10. We vary [𝑀 from

1 to 100, while keeping all other hyper-parameters fixed. Figure 6

show that the performance of ELITE is stable. This confirms that

ELITE is not sensitive to the hyper-parameter [𝑦 , and thus partially

mitigates the hyper-parameter tuning problem. We also observe

that FMNIST and MNIST prefer small [𝑀 as the performance de-

creases with the increase of [𝑀 . However, on CIFAR-10 ELITE

achieves slightly better performance as [𝑀 increases. Therefore,

based on these results, we recommend to set a large [𝑀 on complex

datasets and set a small value if the data set is relatively simple.

5.5 Evaluating the Training Mechanism
5.5.1 Training Process. To better understand the training mecha-

nism of ELITE, we compare ELITE with the semi-supervised Deep-
SAD which is based on the classical semi-supervised classification

mechanism. To ensure a fair comparison, we apply the same loss

function (Eq. 4) to both ELITE and DeepSAD. We report the re-

sults on the FMNIST dataset. Figure 7(a) and Figure 7(b) depict how

ROCAUC score and labeled loss change over the training process.

In DeepSAD, the loss on labeled examples quickly decreases to 0,

while it reduces slowly in ELITE. Meanwhile, the ROCAUC score

of DeepSAD decreases after reaching the peak, potentially because

the deep neural network starts overfitting the labeled examples. In

contrast, the ROCAUC score of ELITE increases stably.

5.5.2 Distribution of Anomalous Scores. As discussed in Sec. 4.3,

ALICE, ELITE’s label inference method, uses meta-gradient to de-

termine the anomalous score of the training data, because the meta-

gradient of anomalies tends to show distinct patterns from that

of normal samples. Here we verify its effectiveness by measur-

ing the distribution of 𝑦 · ∥M∥ which represents the anomalous

score of each training sample. In this experiment, we run ELITE

on MNIST with 𝑟𝑝 = 0.5 and 𝑟𝑙 = 0.004. We separately report

the 𝑦 · ∥M∥ of normal and anomalous samples averaged over the

first 500 iterations. Figure 7(c) shows that the anomalous score

effectively separates anomalous samples from normal ones. That

is, ELITE assigns small scores (negative) to anomalous samples,

while large scores (positive) to normal samples. Although ELITE

still erroneously assigns negative score to some normal samples,



(a) ROCAUC VS Training Epochs (b) Labeled Loss VS Training Epochs (c) Distribution of Anomalous Scores

Figure 7: ROCAUC: Varying the Number of Labeled Examples

their scores still tend to be larger than those of the real anomalies.

This confirms the effectiveness of our ALICE method.

6 CONCLUSION
In this work, we propose ELITE that addresses a fundamental prob-

lem in semi-supervised and unsupervised deep anomaly detection,

namely requiring a clean training data not polluted by anomalies.

ELITE solves above problems by proposing a novel optimization

methodology. Unlike the classical semi-supervised classification

methodology, ELITE uses labeled examples as validation set and

continuously discovers the anomalies in the polluted training data

and learns a better deep anomaly model based on the cleaned train-

ing data. Our experiments in rich variety of scenarios confirm

ELITE’s superiority to the state-of-the-art and its robustness to

polluted training data.
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